
IOSR Journal of Electronics and Communication Engineering (IOSR-JECE)

e-ISSN: 2278-2834,p-ISSN: 2278-8735

PP 28-33

www.iosrjournals.org

International Conference on Electrical, Information and Communication Technologies 28 | Page

(ICEICT -2017)

Design Of High Performance Scs-Based Montgomery Multiplier

S.Ramya, S.Sangeetha, A.Veena BakkyaLakshmi, B.Zeenathul Asma,

Mr.P.Muralikrishnan
Dept of Electronics and Communication Engineering K.Ramakrishnan College of Engineering Samayapuram ,

Trichy.

kuttynandhinibakkya@gmail.com

Assistant Professor Dept of Electronics and Communication Engineering K.Ramakrishnan college of

Engineering Samapuram, Trichy.

Abstract: A simple and efficient multiplication algorithm for the low-cost and high-performance Montgomery

modular multiplier can be implemented accordingly. The proposed multiplier uses one-level carry-save adder

(CSA) to avoid the carry propagation at each addition operation, leading to a low hardware cost and short

critical path delay at the expense of extra clock cycles for completing one modular multiplication. To overcome

the drawback, a configurable CSA (CCSA), which could be one full-adder or two serial half-adders, is proposed

to reduce the extra clock cycles by half. In the proposed architecture, the column and row-bypassing multipliers

examine the number of zeros in either the multiplicand or multiplicator to predict whether the operation

requires one cycle or two cycles to complete. As a result, the extra clock cycle can be hidden and high

throughput can be obtained.

Keywords: modular multiplication, CCSA, skip and detect, bypass multiplier.

I. Introduction
A. Montgomery Modular multiplication

The Montgomery algorithm for modular multiplication is considered to be the fastest algorithm to

compute xy mod n in computers when the values of x, y, and n are large. In this lecture note, we shall describe

the Montgomery algorithm for modular multiplication. Suppose we want to compute xy mod n in a computer.

We first choose a positive integer, r, greater than n and relative prime to n. The value of r is usually 2
m
 for some

positive integer m. This is because multiplication, division and modulo by r can be done by shifting or logical

operations in computers.

Modular multiplication is a fundamental operation in many popular Public Key Cryptography (PKC)

algorithms such as RSA [1] and ECC [2, 3]. As the division operation in modular reduction is time-consuming,

Montgomery [4] proposed a new algorithm where division is avoided. An integer Z is represented as Z · R mod

M, where M is the modulo and R = 2
r
 is a radix that is co prime to M. This representation is called Montgomery

residue. Multiplication is performed in this residue, and division by M is replaced with division by R. This

algorithm can be easily implemented on general purpose processors. However, due to the highly intensive

computation, software implementations are often not fast enough.

B.SCS-Based Montgomery Multiplication

To avoid the long carry propagation, the intermediate result

S of shifting modular addition can be kept in the carry-save representation (SS, SC). However, the format

conversion from the carry-save format of the final modular product into its binary format is needed. A 32-bit

CPA with multiplexers and registers , adds two 32-bit inputs and generates a 32-bit output at every clock cycle,

was adopted for the format conversion. Therefore, the 32-bit CPA will take 32 clock cycles to complete the

format conversion of a 1024-bit SCS-based Montgomery multiplication. One of the operands 0, N, B, and D will

be chosen if (Ai , qi) = (0, 0),(0, 1), (1, 0), and (1, 1), respectively. As a result, only one-level CSA architecture

is required in this multiplier to perform the carry-save addition at the expense of one extra 4-to-1multiplexer and

one additional register to store the operand D. However, they did not present an effective approach to remove

the CPA for format conversion and thus this kind of multiplier still suffers from the critical path of CPA.

Design Of High Performance Scs-Based Montgomery Multiplier

International Conference on Electrical, Information and Communication Technologies 29 | Page

(ICEICT -2017)

II. Modular Multiplication Algorithm

A.FCS Based Montgomery Multiplication

The FCS strategy maintains the input and output operands A, B, and S in the carry-save format, denoted

as (AS, AC), (BS, BC), and (SS, SC), respectively, to avoid the format conversion, leading to fewer clock cycles

for completing a MM.

An energy-efficient FCS-based multiplier is used (denoted as FCS-MMM42 multiplier) in which the

superfluous operations of the four-to-two (two-level) CSA architecture are suppressed to reduce the energy

dissipation and enhance the throughput. However, the FCS-MMM42 multiplier still suffers from the high area

complexity and long critical path delay.

A famous approach to implement modular multiplication in hardware circuits is based on the Montgomery

modular multiplication algorithm since it has many advantages. To speed up the encryption/decryption process,

many high-speed Montgomery modular multiplication algorithms and hardware architectures employ carry-save

addition.

B. CSA Based Montgomery Multiplication:
Montgomery multiplication algorithm is the most efficient algorithm available. The main advantage of

Montgomery algorithm is that it replaces the division operation with shift operations. During two decades many

alternative forms of Montgomery algorithms are introduced. These architectures use carry save addition. The

work presented two types of Montgomery algorithms which use Carry Save Adder (CSA). One of the two types

used four-to two CSA and the other used five-to-CSA. They had given a brief comparison between these two

versions of Montgomery multipliers. They had found that the multiplier using four-to-two CSA architecture has

shorter critical path than that of five-to-two CSA multiplier. But extra storage elements and multiplexers are

required for 4-to-2 architecture which probably increases the energy consumption. The work in proposed a

Montgomery multiplication algorithm using pipelined carry save addition to shorten the critical path delay of

five-to-two CSA. This method also required additional pipeline registers and multiplexers which will increase

the area.

Fig 1.a CSA Based Montgomery Multiplier

III. Proposed Montgomery Multiplication
In this section, we propose a new SCS-based Montgomery

MM algorithm to reduce the critical path delay of Montgomery multiplier. In addition, the drawback of more

clock cycles for completing one multiplication is also improved while maintaining the advantages of short

critical path delay and low hardware complexity.

A. Critical Path Delay Reduction

The critical path delay of SCS-based multiplier can be reduced by combining the advantages of FCS-

MM-2 and SCS-MM-2. That is, we can pre-compute D = B + N and reuse the one-level CSA architecture to

perform B+N and the format conversion.

The Zero_D circuit is used to detect whether SC is equal to zero, which can be accomplished using one NOR

operation. The Q_L circuit decides the qi value . The carry propagation addition operations of B + N and the

format conversion are performed by the one-level CSA architecture of the MSCS-MM multiplier through

repeatedly executing the carry-save addition (SS, SC) = SS + SC + 0 until SC = 0.

In addition, we also pre-compute Ai and qi in iteration i−1

so that they can be used to immediately select the desired input operand from 0, N, B, and D through the

multiplexer M3 in iteration i . Therefore, the critical path delay of the MSCS-MM multiplier can be reduced into

TMUX4 + TFA. However, in addition to performing the three-input carry-save additions k + 2 times, many extra

Design Of High Performance Scs-Based Montgomery Multiplier

International Conference on Electrical, Information and Communication Technologies 30 | Page

(ICEICT -2017)

clock cycles are required to perform B + N and the format conversion via the one-level CSA architecture

because they must be performed once in every MM. Furthermore, the extra clock cycles for performing

B+N and the format conversion through repeatedly executing the carry-save addition (SS, SC) = SS+SC+0 are

dependent on the longest carry propagation chain in SS + SC.

Fig 1.b SCS Based Montgomery Multiplier

B. Clock Cycle Number Reduction

To decrease the clock cycle number, a CCSA architecture which can perform one three-input carry-

save addition or two serial two-input carry-save additions is proposed to substitute for the one-level CSA

architecture .Each cell is one conventional FA which can perform the three-input carry-save addition. If α = 1,

CFA is one FA and can perform one three-input carry-save addition (denoted as 1F_CSA). Otherwise, it is two

half-adders (HAs) and can perform two serial two-input carry-save additions (denoted as 2H_CSA).Moreover,

we modify the 4-to-1 multiplexer SM3 into a simplified multiplier SM3 , because one of its inputs is zero, where

∼ denotes the INVERT operation. Note that M3 has been replaced by SM3 in the proposed one-level CCSA

architecture. According to the delay ratio, TSM3(i.e., 0.68 × TFA) is approximate to TMUX3 (i.e., 0.63 ×

TFA)and TMUXI2 (i.e., 0.23 × TFA) is smaller than TXOR2(i.e., 0.34×TFA). Therefore, the critical path delay

of the proposed one-level CCSA architecture is approximate to that of the one-level CSA architecture.

In addition, we also skip the unnecessary operations for the loop to further decrease the clock cycles for

completing one Montgomery MM. The crucial computation for the loop is performing the following three-to-

two carry-save addition:

(SS[i + 1], SC[i + 1]) = (SS[i] + SC[i] + x)/2 …………(1)

where the variable x may be 0, N, B, or D depending on the

values of Ai and qi . When Ai = 0 and qi = 0, x is equal to 0 and SS[i]0 must be equal to SC[i]0 because the sum

of SS[i]0 +SC[i]0 + x0 is equal to 0. That is, if Ai = 0 and qi = 0, then

SS[i]0 = SC[i]0. Based on this observation, we can conclude

that the sum of the carry propagation addition SS[i+1]k+1:0 +

SC[i + 1]k+1:0 is equal to the sum of the carry propagation

addition SS[i]k+1:1 + SC[i]k+1:1 when Ai = qi = 0 and

SS[i]0 = SC[i]0 = 0. As a result, the computation of (1) in

iteration i can be skipped if we directly right shift the outputs

of one-level CSA architecture in the (i − 1)th iteration by

two bit positions (i.e., divided by 4) instead of one bit position (i.e., divided by 2) when Ai = qi = 0 and SS[i]0 =

SC[i]0 = 0.

Accordingly, the signal skipi+1 used in the ith iteration to indicate whether the carry-save addition in the (i +

1)th

iteration will be skipped can be expressed as

skipi+1 =∼(Ai+1 V qi+1 V SS[i + 1]0)………….. (2)

where V represents the OR operation. If skipi+1 generated in

the i th iteration is 0, the carry-save addition of the (i + 1)th

iteration will not be skipped. In this case, qi+1 and Ai+1

produced in the i th iteration can be stored in FFs and then used to fast select the value of x in the (i+1)th

iteration. Otherwise (i.e., skipi+1 = 1), SS[i + 1] and SC[i + 1] produced in the i th iteration must be right shifted

by two bit positions and the next clock cycle will go to iteration i + 2 to skip the

carry-save addition of the (i + 1)th iteration. In this

Design Of High Performance Scs-Based Montgomery Multiplier

International Conference on Electrical, Information and Communication Technologies 31 | Page

(ICEICT -2017)

i th iteration must be right shifted by two bit positions and

the next clock cycle will go to iteration i + 2 to skip the

carry-save addition of the (i + 1)th iteration. In this situation, not only qi+1 and Ai+1 but also qi+2 and Ai+2

must be produced and stored to FFs in the i th iteration to immediately select the value of x in the (i + 2)th

iteration without lengthening the critical path. Therefore, the selection signals (denoted as ˆ q and ˆA) for

choosing the proper value of x in the next clock cycle must be picked from (qi+1, Ai+1) or (qi+2, Ai+2)

according to the skipi+1 signal produced in the

i th iteration. That is, (q, A) = (qi+2, Ai+2) if skipi+1 = 1.

Otherwise, (q, A) = (qi+1, Ai+1).

Fig 1.c. Modified SCS based Montgomery multiplication

C. Quotient Pre-computation

As mentioned above, Ai+1, Ai+2, qi+1, and qi+2 must

be known in the i th iteration for skipping the unnecessary

operation in the (i+1)th iteration. It is easy to obtain Ai+1 and

Ai+2 in the i th iteration. The quotient qi+1 can be computed

in the i th iteration as follows:

qi+1 = (SS[i + 1]0 + SC[i + 1]0 + Ai+1 × B0) mod 2……... (3)

However, SS[i +1]0 and SC[i +1]0 are unavailable until (1) is

completed. Therefore, the critical path of Montgomery multiplier will be largely lengthened if (3) is directly

used to produce qi+1 in the i th iteration.

To avoid this situation, N, B, and D are modified as follows

so that SS[i + 1]0, SC[i + 1]0, qi+1, and qi+2 can be quickly

generated in the i th iteration. Since modulus N is an odd number and is added in the i th iteration only when qi

is equal to one, it is found that at least a propagated carry 1 is generated since N0 is equal to one. Therefore, we

can directly employ the value ˆN as shown in (4) instead of N to accomplish the process of Montgomery MM.

Afterward, ˆN1:0 must be equal to zero.

Moreover, we employ ˆB = 8B instead of B to ensure that

ˆB 2:0 is equal to zero so that Ai+1×B0 in (3) can be eliminated and the computation of qi+2 can also be

simplified. Note that three extra clock cycles at the end of MM for computing division by two are necessary to

maintain the correctness of Montgomery MM because B is replaced with 8B. If N and B are replaced by ˆN and

ˆB , the produced

 ˆD1:0 (ˆD = ˆN + ˆB) must be equal to zero.

After N, B, and D are replaced by ˆN , ˆB, and ˆD, we can

ensure that the two LSBs of variable x (i.e., x1:0) in (1) must

be equal to zero. As a result, the carry value SC[i+1]0 is equal to SS[i]0 ^SC[i]0 since x0 = 0, where ^denotes

the

AND operation. Moreover, the sum value SS[i + 1]0 is equal to SS[i]1 ⊕ SC[i]1 because x1 = 0, where ⊕ is

the

XOR operation. According to the above results, the logic

expression in (3) for generating qi+1 in the i th iteration can

be rewritten as

qi+1 = (SS[i]1 ⊕ SC[i]1) ⊕ (SS[i]0 ∧ SC[i]0)……….. (4)

Similar to (3), the quotient qi+2 can be generated in the

Design Of High Performance Scs-Based Montgomery Multiplier

International Conference on Electrical, Information and Communication Technologies 32 | Page

(ICEICT -2017)

i th iteration by the following equation:

qi+2 = (SS[i + 2]0 + SC[i + 2]0) mod 2…………….... (5)

The qi+2 will be selected in the i th iteration only when

skipi+1 = 1. In this case, Ai+1 = qi+1 = 0 and SS[i + 1]0 =

SC[i + 1]0 = 0 so that SS[i + 2]0 + SC[i + 2]0 is equal to SS[i + 1]1 + SC[i + 1]1. Because x1 = 0, SC[i + 1]1 =

SS[i]1^SC[i]1. Moreover, SS[i + 1]1 is equal to SS[i]2⊕SC[i]2 ⊕ x2 and x2 is equal to 0, ˆN2, 0, or ˆN2 when

(Ai , qi) = (0, 0), (0, 1), (1, 0), or (1, 1). Therefore, we can obtain that x2 = qi ^ ˆN2. As a result, (6) can be

simplified and expressed as

qi+2 = (SS[i]2 ⊕ SC[i]2) ⊕ (qi ∧ ˆN2) ⊕ (SS[i]1 ∧ SC[i]1)…(6)

In addition to qi+1 and qi+2 can be simplified into (5) and (7), we can also derive a simpler expression for

skipi+1 in (2). Let δ1 = SS[i]1 ⊕ SC[i]1 and δ0 = SS[i]0 ^SC[i]0,then

skipi+1 = ∼(Ai+1 ∨ qi+1 ∨ SS[i + 1]0)

 = ∼(Ai+1 ∨ (δ1 ⊕ δ0) ∨ δ1)

 = ∼(Ai+1 ∨ δ1 ∨ δ0)

 = ∼(Ai+1 ∨ (SS[i]1 ⊕ SC[i]1) ∨ (SS[i]0 ∧ SC[i]0))..(8)

According to (8), we can quickly obtain skipi+1 in the i th

iteration by SS[i]1, SC[i]1, SS[i]0, and SC[i]0.

D. Proposed Algorithm and Hardware Architecture

On the bases of critical path delay reduction, clock cycle number reduction, and quotient pre-computation

mentioned above, a new SCS-based Montgomery MM algorithm

(i.e., SCS-MM-New algorithm) using one-level CCSA architecture is proposed to significantly reduce the

required clock cycles for completing one MM. As shown in SCS-MM-New algorithm, steps 1–5 for producing

ˆB and ˆD are first performed. Note that because qi+1 and qi+2 must be generated in the i th iteration, the

iterative index i of Montgomery MM will start from −1 instead of 0 and the corresponding initial values of ˆ q

and ˆA must be set to 0. Furthermore, the original for loop is replaced with the while loop in SCS-MM-New

algorithm to skip some unnecessary iterations when skipi+1 = 1. In addition, the ending number of iterations in

SCS-MM-New algorithm is changed to k + 4 instead of k + 1.

 The hardware architecture of SCS-MM-New algorithm,

denoted as SCS-MM-New multiplier, which consists of one one-level CCSA architecture, two 4-to-1

multiplexers (i.e., M1 and M2), one simplified multiplier SM3, one skip detector Skip_D, one zero detector

Zero_D, and six registers. Skip_D is developed to generate skipi+1, ˆ q, and ˆA in the i th iteration. Both M4 and

M5 in are 3-bit 2-to-1 multiplexers and they are much smaller than k-bit multiplexers M1, M2, and SM3. In

addition, the area of Skip_D is negligible when compared with that of the k-bit one-level CCSA architecture.

The select signals of multiplexers M1 and M2 are generated by the control part, which are not depicted for the

sake of simplicity.

Fig 1.d. Proposed SCS based Montgomery multiplier

Design Of High Performance Scs-Based Montgomery Multiplier

International Conference on Electrical, Information and Communication Technologies 33 | Page

(ICEICT -2017)

IV. Experimental Results
A. Analysis of Delay and Area

The maximum delay for generating ˆ q through M4, M5, and Skip_D is TMUX2 + TXOR2 + TXOR3 +

TMUX2. Moreover, TSM3 and TMUXI2 are less than TMUX4 and TXOR2. Therefore, the maximum delay of

the one-level CCSA architecture for generating SS and SC is approximate to TMUX4 + TFA (i.e., 1.71 × TFA).

As a result, the critical path delay of the SCS-MM-New multiplier is 2.17 × TFA, which is less than that of all

Montgomery multipliers. Furthermore, the critical path delay of the FCS-MMM42 multiplier in [10] is TMUX4

+ 2 × TFA (i.e., 2.71 × TFA), which is much longer than that of the proposed SCS-MM-New multiplier.

On the other hand, the area complexity of SCS-MM-New multiplier is k × ACFA + 5k × AREG + k × ASR + 2k

× AMUX4 +k × ASM3. FA is modified into CFA at expense of one 2-input NAND gate and one 2-to-1 MUXI

cell. Therefore, ACFA is approximate to AFA + ANAND2 + AMUXI2. In addition, ASM3 is approximate to

ANAND2 + AMUXI2 + AMUX2. As a result, the area complexity of the proposed SCS-MM-New multiplier

will be approximate to 9.88k×AFA. When compared with the previous multipliers, the area of SCS-MM-New

multiplier is larger than that of SCS-MM-2 multiplier, but smaller than that of FCS-MM-1 and FCS-MM-2

multipliers. In addition, the area complexity of the FCS-MMM42 multiplier in [10] is 2k × AFA + 7k × AREG +

2k × ASR + 2k × AMUX2 + 2k × AMUX4 (i.e., 13.28k × AFA), which is much larger than that of the proposed

SCS-MM New multiplier. Finally, if the non-configurable one-level CSA architecture is used in the SCS-MM-

New multiplier, its area complexity will be reduced to 9.4k × AFA. That is, ∼5% additional area is required to

form the CCSA architecture.

B. Implementation Results

To further verify the efficiency of the proposed design, we synthesized the Montgomery modular

multipliers by Synopsys Design Compiler with TSMC 90-nm CMOS cell library. Subsequently, the Cadence

SoC Encounter was employed to perform the placement and routing. Delay estimations were obtained behind

RC extraction from the placed and routed netlists. The implementation results, including the critical path delay

(Delay), the hardware area (Area), the execution time (Time), and the throughput rate of these modular

multipliers are found. The execution time is the required time to accomplish one Montgomery MM, i.e., #Cycle

× Delay. The throughput rate is formulated as the key size multiplied by the frequency (the reciprocal of Delay)

and then divided by #Cycle.

V. Conclusion
FCS-based multipliers maintain the input and output operands of the Montgomery MM in the carry-

save format to escape from the format conversion, leading to fewer clock cycles but larger area than SCS-based

multiplier. To enhance the performance of Montgomery MM while maintaining the low hardware complexity,

this paper has modified the

SCS-based Montgomery multiplication algorithm and proposed a low-cost and high-performance

Montgomery modular multiplier. The proposed multiplier used one-level CCSA architecture and skipped the

unnecessary carry-save addition operations to largely reduce the critical path delay and required clock cycles for

completing one MM operation.

Experimental results showed that the proposed approaches are indeed capable of enhancing the performance of

radix-2

CSA-based Montgomery multiplier while maintaining low hardware complexity.

References:
[1]. R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures and public-key cryptosystems,”

Commun. ACM, vol. 21, no. 2, pp. 120–126, Feb. 1978.

[2]. V. S. Miller, “Use of elliptic curves in cryptography,” in Advances in Cryptology. Berlin, Germany: Springer-Verlag,

1986, pp. 417–426.

[3]. N. Koblitz, “Elliptic curve cryptosystems,” Math. Comput., vol. 48, no. 177, pp. 203–209, 1987.

[4]. P. L. Montgomery, “Modular multiplication without trial division,” Math. Comput., vol. 44, no. 170, pp. 519–521,

Apr. 1985.

[5]. Y. S. Kim, W. S. Kang, and J. R. Choi, “Asynchronous implementation of 1024-bit modular processor for RSA

cryptosystem,” in Proc. 2nd IEEE Asia-Pacific Conf. ASIC, Aug. 2000, pp. 187–190.

[6]. V. Bunimov, M. Schimmler, and B. Tolg, “A complexity-effective version of Montgomery’s algorihm,” in Proc.

Workshop Complex. Effective Designs, May 2002.

[7]. H. Zhengbing, R. M. Al Shboul, and V. P. Shirochin, “An efficient architecture of 1024-bits cryptoprocessor for RSA

cryptosystem based on modified Montgomery’s algorithm,” in Proc. 4th IEEE Int. Workshop Intell. Data Acquisition

Adv. Comput. Syst., Sep. 2007, pp. 643–646.

